↳ ITRS
↳ ITRStoIDPProof
z
g(TRUE, x, y, z) → f(>@z(x, z), x, y, +@z(z, 1@z))
g(TRUE, x, y, z) → f(>@z(x, z), x, +@z(y, 1@z), z)
f(TRUE, x, y, z) → g(>@z(x, y), x, y, z)
g(TRUE, x0, x1, x2)
f(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
g(TRUE, x, y, z) → f(>@z(x, z), x, y, +@z(z, 1@z))
g(TRUE, x, y, z) → f(>@z(x, z), x, +@z(y, 1@z), z)
f(TRUE, x, y, z) → g(>@z(x, y), x, y, z)
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(+@z(y[0], 1@z) →* y[1])∧(>@z(x[0], z[0]) →* TRUE))
(1) -> (0), if ((z[1] →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(>@z(x[1], y[1]) →* TRUE))
(1) -> (2), if ((z[1] →* z[2])∧(x[1] →* x[2])∧(y[1] →* y[2])∧(>@z(x[1], y[1]) →* TRUE))
(2) -> (1), if ((+@z(z[2], 1@z) →* z[1])∧(x[2] →* x[1])∧(y[2] →* y[1])∧(>@z(x[2], z[2]) →* TRUE))
g(TRUE, x0, x1, x2)
f(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(+@z(y[0], 1@z) →* y[1])∧(>@z(x[0], z[0]) →* TRUE))
(1) -> (0), if ((z[1] →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(>@z(x[1], y[1]) →* TRUE))
(1) -> (2), if ((z[1] →* z[2])∧(x[1] →* x[2])∧(y[1] →* y[2])∧(>@z(x[1], y[1]) →* TRUE))
(2) -> (1), if ((+@z(z[2], 1@z) →* z[1])∧(x[2] →* x[1])∧(y[2] →* y[1])∧(>@z(x[2], z[2]) →* TRUE))
g(TRUE, x0, x1, x2)
f(TRUE, x0, x1, x2)
(1) (+@z(y[0], 1@z)=y[1]1∧>@z(x[1], y[1])=TRUE∧z[1]=z[0]∧>@z(x[0], z[0])=TRUE∧x[0]=x[1]1∧z[0]=z[1]1∧y[1]=y[0]∧x[1]=x[0] ⇒ G(TRUE, x[0], y[0], z[0])≥NonInfC∧G(TRUE, x[0], y[0], z[0])≥F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])∧(UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥))
(2) (>@z(x[1], y[1])=TRUE∧>@z(x[1], z[0])=TRUE ⇒ G(TRUE, x[1], y[1], z[0])≥NonInfC∧G(TRUE, x[1], y[1], z[0])≥F(>@z(x[1], z[0]), x[1], +@z(y[1], 1@z), z[0])∧(UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥))
(3) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -1 + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -1 + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (x[1] + -1 + (-1)z[0] ≥ 0∧x[1] + -1 + (-1)y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥))
(6) (y[1] + x[1] + (-1)z[0] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥))
(7) (z[0] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥))
(8) (z[0] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥))
(9) (z[0] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥))
(10) (F(TRUE, x[1], y[1], z[1])≥NonInfC∧F(TRUE, x[1], y[1], z[1])≥G(>@z(x[1], y[1]), x[1], y[1], z[1])∧(UIncreasing(G(>@z(x[1], y[1]), x[1], y[1], z[1])), ≥))
(11) ((UIncreasing(G(>@z(x[1], y[1]), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(G(>@z(x[1], y[1]), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(G(>@z(x[1], y[1]), x[1], y[1], z[1])), ≥))
(14) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(G(>@z(x[1], y[1]), x[1], y[1], z[1])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(15) (>@z(x[1], y[1])=TRUE∧>@z(x[2], z[2])=TRUE∧z[1]=z[2]∧x[1]=x[2]∧+@z(z[2], 1@z)=z[1]1∧x[2]=x[1]1∧y[1]=y[2]∧y[2]=y[1]1 ⇒ G(TRUE, x[2], y[2], z[2])≥NonInfC∧G(TRUE, x[2], y[2], z[2])≥F(>@z(x[2], z[2]), x[2], y[2], +@z(z[2], 1@z))∧(UIncreasing(F(>@z(x[2], z[2]), x[2], y[2], +@z(z[2], 1@z))), ≥))
(16) (>@z(x[1], y[1])=TRUE∧>@z(x[1], z[2])=TRUE ⇒ G(TRUE, x[1], y[1], z[2])≥NonInfC∧G(TRUE, x[1], y[1], z[2])≥F(>@z(x[1], z[2]), x[1], y[1], +@z(z[2], 1@z))∧(UIncreasing(F(>@z(x[2], z[2]), x[2], y[2], +@z(z[2], 1@z))), ≥))
(17) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -1 + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(>@z(x[2], z[2]), x[2], y[2], +@z(z[2], 1@z))), ≥)∧1 + (-1)Bound + (-1)z[2] + x[1] ≥ 0∧0 ≥ 0)
(18) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -1 + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(>@z(x[2], z[2]), x[2], y[2], +@z(z[2], 1@z))), ≥)∧1 + (-1)Bound + (-1)z[2] + x[1] ≥ 0∧0 ≥ 0)
(19) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -1 + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(>@z(x[2], z[2]), x[2], y[2], +@z(z[2], 1@z))), ≥)∧1 + (-1)Bound + (-1)z[2] + x[1] ≥ 0∧0 ≥ 0)
(20) (x[1] ≥ 0∧y[1] + x[1] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(>@z(x[2], z[2]), x[2], y[2], +@z(z[2], 1@z))), ≥)∧2 + (-1)Bound + (-1)z[2] + y[1] + x[1] ≥ 0∧0 ≥ 0)
(21) (x[1] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(F(>@z(x[2], z[2]), x[2], y[2], +@z(z[2], 1@z))), ≥)∧2 + (-1)Bound + z[2] ≥ 0∧0 ≥ 0)
(22) (x[1] ≥ 0∧z[2] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[2], z[2]), x[2], y[2], +@z(z[2], 1@z))), ≥)∧2 + (-1)Bound + z[2] ≥ 0∧0 ≥ 0)
(23) (x[1] ≥ 0∧z[2] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[2], z[2]), x[2], y[2], +@z(z[2], 1@z))), ≥)∧2 + (-1)Bound + z[2] ≥ 0∧0 ≥ 0)
POL(F(x1, x2, x3, x4)) = 1 + (-1)x4 + x2
POL(TRUE) = -1
POL(G(x1, x2, x3, x4)) = 1 + (-1)x4 + x2
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
G(TRUE, x[2], y[2], z[2]) → F(>@z(x[2], z[2]), x[2], y[2], +@z(z[2], 1@z))
G(TRUE, x[2], y[2], z[2]) → F(>@z(x[2], z[2]), x[2], y[2], +@z(z[2], 1@z))
G(TRUE, x[0], y[0], z[0]) → F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])
F(TRUE, x[1], y[1], z[1]) → G(>@z(x[1], y[1]), x[1], y[1], z[1])
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDPNonInfProof
z
(1) -> (0), if ((z[1] →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(>@z(x[1], y[1]) →* TRUE))
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(+@z(y[0], 1@z) →* y[1])∧(>@z(x[0], z[0]) →* TRUE))
g(TRUE, x0, x1, x2)
f(TRUE, x0, x1, x2)
(1) (+@z(y[0], 1@z)=y[1]1∧>@z(x[1], y[1])=TRUE∧z[1]=z[0]∧>@z(x[0], z[0])=TRUE∧x[0]=x[1]1∧z[0]=z[1]1∧y[1]=y[0]∧x[1]=x[0] ⇒ G(TRUE, x[0], y[0], z[0])≥NonInfC∧G(TRUE, x[0], y[0], z[0])≥F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])∧(UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥))
(2) (>@z(x[1], y[1])=TRUE∧>@z(x[1], z[0])=TRUE ⇒ G(TRUE, x[1], y[1], z[0])≥NonInfC∧G(TRUE, x[1], y[1], z[0])≥F(>@z(x[1], z[0]), x[1], +@z(y[1], 1@z), z[0])∧(UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥))
(3) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -1 + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥)∧2 + (-1)Bound + (-1)y[1] + x[1] ≥ 0∧0 ≥ 0)
(4) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -1 + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥)∧2 + (-1)Bound + (-1)y[1] + x[1] ≥ 0∧0 ≥ 0)
(5) (x[1] + -1 + (-1)y[1] ≥ 0∧x[1] + -1 + (-1)z[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥)∧2 + (-1)Bound + (-1)y[1] + x[1] ≥ 0)
(6) (x[1] ≥ 0∧y[1] + x[1] + (-1)z[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥)∧3 + (-1)Bound + x[1] ≥ 0)
(7) (x[1] ≥ 0∧z[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥)∧3 + (-1)Bound + x[1] ≥ 0)
(8) (x[1] ≥ 0∧z[0] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥)∧3 + (-1)Bound + x[1] ≥ 0)
(9) (x[1] ≥ 0∧z[0] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])), ≥)∧3 + (-1)Bound + x[1] ≥ 0)
(10) (F(TRUE, x[1], y[1], z[1])≥NonInfC∧F(TRUE, x[1], y[1], z[1])≥G(>@z(x[1], y[1]), x[1], y[1], z[1])∧(UIncreasing(G(>@z(x[1], y[1]), x[1], y[1], z[1])), ≥))
(11) ((UIncreasing(G(>@z(x[1], y[1]), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(G(>@z(x[1], y[1]), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(G(>@z(x[1], y[1]), x[1], y[1], z[1])), ≥))
(14) (0 = 0∧(UIncreasing(G(>@z(x[1], y[1]), x[1], y[1], z[1])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
POL(F(x1, x2, x3, x4)) = 2 + (-1)x3 + x2
POL(TRUE) = -1
POL(G(x1, x2, x3, x4)) = 2 + (-1)x3 + x2
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
G(TRUE, x[0], y[0], z[0]) → F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])
G(TRUE, x[0], y[0], z[0]) → F(>@z(x[0], z[0]), x[0], +@z(y[0], 1@z), z[0])
F(TRUE, x[1], y[1], z[1]) → G(>@z(x[1], y[1]), x[1], y[1], z[1])
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
g(TRUE, x0, x1, x2)
f(TRUE, x0, x1, x2)